

Мульти

Каталоговый номер - см. ярлык на коробке

Подходит для следующих каталоговых номеров:

Мульти №2 Мульти №3 Мульти №6 Мульти №4 Мульти №10

НАРКОСТОП на 16 видов наркотиков фирмы Wondfo предназначен для определения любой произвольной комбинации от 2-10 видов наркотиков, из следующих 16 наркотических веществ: амфетамин (AMP), барбитураты (BAR), бензодиазепины (BZO), кокаин (COC), марихуана (THC), метадон (MTD), метамфетамин (MET), метилендиоксиметамфетамин (MDMA), морфин (MOP), опиаты (OPI 2000). фенциклидин (PCP), трициклические антидепрессанты (TCA), бупренорфин (BUP), оксикодон (ОХY), кетамин (КЕТ), пропоксифен (РРХ),

Данная инструкция описывает все возможные комбинации для мульти-тест-системы. Поэтому некоторая информация, касающаяся рабочих характеристик, может не относиться к проводимому Вами тесту. Пожалуйста, обратитесь к ярлыкам на упаковке и надписям на тестовых полосках для того чтобы определить, какие наркотические вещества относятся к проводимому Вами тесту.

Одноэтапная тестовая экспресс-система для качественного определения наркотических вешеств и их основных метаболитов в моче пациента при наличии определенной пороговой концентрации.

Только для применения in vitro

НАЗНАЧЕНИЕ

НАРКОСТОП на 16 видов наркотиков фирмы Wondfo состоит из двадцати индивидуальных одноэтапных иммунологических исследований. Тест предназначен для определения спецефических наркотических веществ и их метаболитов в моче человека путем иммунохроматографического анализа. Чувствительность определения для этих веществ указана в таблице ниже:

Тест	Калибратор	Пороговая
		концентрация, нг/мл
Амфетамин	Амфетамин	800
Барбитураты	Секобарбитал	200
Бензодиазепины	Оксазепам	200
Кокаин	Бензойлекгонин	200
Марихуана	Марихуана	30
Метадон	Метадон	200
Метамфетамин	Метамфетамин	400
Метилендиоксиметамфетамин	3,4-Метилендиоксиметамфетамин	400
	HCI (MDMA)	
Морфин	Морфин	200
Опиаты	Морфин	200
Фенциклидин	Фенциклидин	25
Трициклические антидепрессанты	Нотриптилин	800
Бупренорфин	Бупренорфин	10
Оксикодон	Оксикодон	100
Кетамин	Кетамин	800
Пропоксифен	Пропоксифен	200

Данное исследование является качественным и предварительным. Для подтверждения полученного результата рекомендуется использование дополнительных химических методов. Предпочтение отдается газовой хроматографии/масс-спектрометрии (GC/MS, ГХ/MC). При применении теста на определение любого наркотического вещества следует учитывать также клинические данные и профессиональную оценку ситуации в целом, особенно при получении положительных первичных результатов.

ПРИНЦИП РАБОТЫ

Олноэтапная мульти-тест-система для определения наркотических веществ в моче фирмы Wondfo представляет собой конкурирующий иммунологический тест, используемый для скрининга наличия наркотических веществ в моче. Имеет вид хроматографической абсорбционной системы, в которой наркотические вещества и их метаболиты в образце конкурентно связываются с ограниченным числом мест связывания на конъюгате, окрашенном антителами.

При погружении абсорбирующего конца тестовой системы в образец мочи, моча подвергается капиллярной абсорбции, смешивается с окрашенным антителами конъюгатом и растекается вдоль покровной мембраны. Если концентрация наркотического вещества в образце равна нулю или ниже пороговой (чувствительность определения теста), окрашенный антителами конъюгат связывается с комплексом наркотическое вещество-белок, зафиксированным в тестовой области (Т) системы. Это приводит к появлению цветной Тестовой полоски, которая, вне зависимости от интенсивности, указывает на отрицательный результат. Если концентрация наркотического вещества находится на уровне пороговой или выше, свободные

молекулы наркотического вещества связываются с окрашенным антителами конъюгатом, предотвращая связывание последнего с комплексом наркотическое вещество - белок в тестовой области (Т) системы. Это предотвращает появления четкой окрашенной полосы в тестовой области, что указывает на возможный положительный результат.

Для контроля проведения теста, в том случае, если тест был выполнен правильно, в Контрольной области (С) появляется контрольная полоска.

МЕРЫ ПРЕДОСТОРОЖНОСТИ

- Только для наружного применения. Не глотать
- Выбрасывать сразу после использования. Не использовать повторно.
- Не использовать по истечении срока годности.
- Не использовать при надрыве или нарушении целостности упаковки.
- Беречь от детей.
- Не интерпретировать тест по истечении 5 минут.

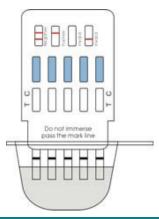
УСЛОВИЯ ХРАНЕНИЯ

- Хранить при температуре 4 ~30°C без нарушения упаковки до истечения срока годности.
- Не подвергать воздействию прямых солнечных лучей, влаги или высокой температуры.
- НЕ ЗАМОРАЖИВАТЬ.

НАБОР

Содержимое набора Тестовая система

- Инструкция по применению на 100 наборов
- Требуемые дополнительные приспособления
 - Таймер
 - Стаканчик для сбора мочи


СБОР И ПОДГОТОВКА ОБРАЗЦА

Собрать образец мочи в стакан для сбора мочи. Образцы мочи можно хранить в холодильнике (2-8° C) до сорока восьми часов. Для более длительного хранения, образцы следует заморозить (-20°С и ниже). Перед проведением теста замороженные или сохраненные в холодильнике образцы следует разморозить при комнатной температуре.

ПРОЦЕДУРА ПРОВЕДЕНИЯ ТЕСТА

Тест следует проводить при комнатной температуре (от 18° C до 30° C).

- Откройте упаковочную фольгу, надорвав ее вдоль насечки. Извлеките тестовую систему из упа-
- 2. Удерживайте тестовую систему одной рукой с одного края. Другой рукой снимите колпачок и обнажите абсорбирующий конец.
- Погрузите абсорбирующий конец в образец мочи на 10 секунд. Убедитесь, что уровень мочи на-3. ходится не выше отметки «МАХ», напечатанной на передней стороне системы.
- Положите систему горизонтально на чистую, сухую, не впитывающую поверхность. Оценить результаты в течение пяти минут. По истечении указанного времени результат не являет-

ОЦЕНКА РЕЗУЛЬТАТОВ

Положительный (+)

В контрольной области определяется ярко-розовая полоска. В тестовой области цветная полоска отсутствует. Это указывает на наличие соответствующего наркотического вещества в специфической

Отрицательный (-)

Ярко-розовая полоска определяется в каждой контрольной и соответствующей тестовой областях. Это указывает на то, что концентрация соответствующего наркотического вещества в специфической тестовой области равна нулю или ниже пороговой.

Если цветная полоска не определяется в контрольной области или определяется только в тестовой области, тест проведен некорректно. Для повторного теста следует использовать другую тестовую систему. Пожалуйста, свяжитесь с торговым представителем, у которого Вы приобрели тестовую систему, и сообщите ему серийный номер.

Внимание: Интенсивность цвета или ширина полоски не имеют значения в оценке результатов теста.

КОНТРОЛЬ КАЧЕСТВА

Несмотря на наличие внутренней системы контроля в виде полоски в Контрольной области, для подтверждения результатов теста и верификации правильности его проведения, рекомендуется использование внешних систем контроля. Положительный и отрицательный контроль должны давать ожидаемые результаты.

ОГРАНИЧЕНИЯ ПО ПРИМЕНЕНИЮ

- Данный тест разработан только для оценки образцов мочи. Не предназначен для использования других биологических образцов
- Наличие примесей в образцах мочи может приводить к неправильным результатам. Активные окислители, например, хлорная известь (гипохлорит) могут окислять анализируемое наркотиче ское вещество. Если имеются подозрения на наличие примесей в образце мочи, следует собрать другой образец.
- Данный тест является качественным и скрининговым. Не предназначен для количественного определения концентрации наркотического вещества и степени интоксикации.
- Возможны технические или методические ошибки, равно как и присутствие конкурирующих при месей в образце мочи, которые могут приводить к ошибочным результатам.
- Отрицательный результат необязательно свидетельствует об отсутствии наркотического вещества в моче. Отрицательный результат может иметь место при наличии наркотического вещества в концентрации ниже пороговой.
- Тестовая система не позволяет дифференцировать вещества, вызывающие наркотическую зависимость, от некоторых лекарственных средств.
- Положительный результат может иметь место при употреблении некоторых пищевых продуктов или пишевых добавок.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

Точность

Было проведено сравнение результатов применения данной тестовой системы и доступной промышленной тестовой экспресс-системы (Одношаговая мульти-линейная скрининговая система со встроенным стаканчиком для сбора исследуемого материала (моча), оснащенная интегрированным Е-Z ключом фирмы Acon). В тесте были использованы 740 образцов. Положительные результаты были подтверждены газовой хроматографией/масс-спектрометрией. Были получены следующие результаты:

% совпадений с промышленной тестовой системой

Образец	AMP	BAR	BZO	COC	THC	MTD	MET	MDMA
Положительный	>99%	97.5%	95%	100%	95%	90%	>99%	95%
Отрицательный	>99%	99%	100%	99%	99%	99%	>99%	99%
Всего	>99%	98.6%	97.9%	>99%	97.9%	96.4%	>99%	97.9%

Образец	MOP	OPI	PCP	TCA	BUP	OXY	KET	PPX
	300	2000						
Положительный	97,5%	97.5%	97.5%	95%	97%	>99%	96%	95%
Отрицательный	99%	99%	99%	99%	97%	>99%	99%	100%
Всего	98.6%	98.6%	98.6%	97.9%	97%	>99%	97.5%	97.9%

% совпадений с газовой хроматографией/масс-спектрометрией

Образец	AMP	BAR	BZO	COC	THC	MTD	MET	MDMA
Положительный	94%	92%	97%	96%	95%	95%	99%	97%
Отрицательный	99%	98%	97%	99%	96%	99%	99%	99%
Всего	97%	95%	97%	98%	96%	97%	99%	98%
Образец	MOP	OPI	PCP	TCA	BUP	OXY	KET	PPX
·	300	2000						
Положительный	98%	99%	91%	95%	90%	92.5%	92.5%	90%
Отрицательный	98%	99%	99%	99%	97.5%	97.5%	95%	97.5%
Всего	98%	99%	95%	97%	93.8%	95%	93.8%	93.8%

Аналитическая чувствительность

К образцам мочи добавлялись стандартные наркотические вещества в концентрации $\pm 50\%$ пороговой и $\pm 25\%$ пороговой. Результаты приведены в таблице ниже.

Конц. наркотического в-ва	n	A۱	ИΡ	B/	٩R	BZ	<u>'</u> O	CC	C	TH	HC	M	TD	M	ET	MD	MA
(пороговый уровень)		-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
0% порогового уровня	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-50% порогового уровня	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-25% порогового уровня	30	25	5	26	4	26	4	25	5	23	7	25	5	25	5	23	7
Пороговый уровень	30	12	18	10	20	14	16	15	15	14	16	12	18	13	17	10	20
+25% порогового уровня	30	5	25	8	22	5	25	6	24	3	27	6	24	5	25	4	26
+50% порогового уровня	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30

Конц. наркотического в-ва	n	М	OP.	0	PI	PC	-P	тс	Ā	Bl	JP	0	ΧY	К	FT.	PF	Pχ
(пороговый уровень)	l ''		00	_	00				-, (^
		-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
0% порогового уровня	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-50% порогового уровня	30	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0
-25% порогового уровня	30	24	6	25	5	26	4	24	6	26	4	26	4	27	3	26	4
Пороговый уровень	30	10	20	14	16	15	15	14	16	1	29	3	27	2	28	1	29
+25% порогового уровня	30	3	27	5	25	7	23	6	24	0	30	0	30	0	30	0	30
+50% порогового уровня	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30	0	30

Аналитическая специфичность

Для оценки специфичности теста, тестовая система использовалась для определения различных наркотических веществ, их метаболитов и других соединений, которые вероятно присутствовали в образцах мочи. Все соединения добавлялись к нормальной моче человека, с нулевой концентрацией наркотических веществ. Приведенные ниже концентрации (нг/мл) также отражают ограничения

Амфетамин		Метамфетамин	
d-Амфетамин	800	D(+)-Метамфетамин	400
d,1 – Амфетамин	3,000	D-Амфетамин	50,000
1-Амфетамин	50,000	Хлорохин	50,000
(+/-)	5,000	(+/-)-Эфедрин	50,000
3,4-Метилендиоксиамфетамин	3,000	(т) эфедрии	30,000
Фентермин	3,000	(-)-Метамфетамин	25,000
Барбитураты		(+/-)3,4-Метилендиоксиметамфетам	2,000
71.		ин (МDMA)	'
Секобарбитал	200	b-Фенилэтиламин	50,000
Амобарбитал	200	Триметобензамид	10,000
Алфенол	150		
Апробарбитал	200	Метилендиоксиметамфетамин (MDMA	١)
Бутабарбитал	75	3,4-Метилендиоксиметамфетамин HCI (MDMA)	500
Буталбитал	2,500	3,4-Метилендиоксиамфетамин HCl	3,000
Циклопентобарбитал	600	3,4-Метилендиоксэтилмфетамин	300
Пентобарбитал	200	Морфин	
Фенобарбитал	100	Морфин	200
Бензодиазепины		Кодеин	200
Оксазепам	200	Этилморфин	200
Алпразолам	200	Гидрокодон	5,000
α-Гидроксиалпразолам	1,500	Гидроморфон	5,000
Бромазепам	1,500	Морфин-3-b-d-глюкуронид	1,000
Хлордиазепоксид	1,500	Тебаин	30,000
Клоназепам HCl	800	Опиаты 200	
Клобазам	100	Морфин	200
Клоназепам	800	Кодеин	200
Клоназепат дикалий	200	Этилморфин	1,000
Делоразепам	1,500	Гидрокодон	12,500
Дезалкилфлуразепам	400	Гидроморфин	1,000
Диазепам	200	Леворфанол	75,000
Эстазолам	2,500	σ-Моноацетилморфин	1,000
Флунитразепам	400	Морфин 3-β-D-глюкуронид	200
D,L – Лоразепам	1,500	Норкодеин	12,500
-,,	1,222	Норморфон	50,000
Мидазолам	12,500	Оксикодон	25,000
Нитразепам	100	Оксиморфин	25,000
Норхлордиазепоксид	200	Прокаин	150,00
Нордиазепам	400	Тебаин	100,00
Темазепам	100	Фенциклидин	1.00,00
Тразолам	2,500	Фенциклидин	25
Кокаин	1 =,===	4-Гидроксифенциклидин	12,500
Бензойлекгонин	200	Трициклические антидепрессанты	12,500
Кокаина НСІ	750	Нотриптилин	800
Кокаэтилен	12,500	Нордоксепин	800
Экгонин	32,000		1
Марихуана	1 -2,000		1
11-Hop-D9-THC-9-COOH	30	Тримипрамин	3,000
11-Hop-D8-THC-9-COOH	30	Амитриптилин	1,500
11-Гидрокси-D9-	2,500	Промазин	1,500
тетрагидроксиканнадиол	_,	In	1,200
D8-Тетрагидроксиканнадиол	7,500	Дезипрамин	200
D9-Тетрагидроксиканнадиол	10,000	Имипрамин	400
Каннабиол	10,000	Кломипрамин	12,500
Каннабидиол	100,000	Доксепин	2,000
Метадон	1 100,000	Мапротилин	2,000
Метадон	400	Прометазин	25,000
Доксиламин	50,000	Бупренорфин	25,000
Оксикодон	1 30,000	Бупренорфин 3-D-глюкуронид	15
Дигидрокодеин — — — — — — — — — — — — — — — — — — —	20,000	Норбупренорфин	20

Кодеин	100,000	Норбупренорфин 3-D-глюкуронид	200
Гидроморфин	100,000	Кетамин	
Морфин	>100,000	Метадон	50,000
Ацетилморфин	>100,000	Петидин	12,500
Бупренорфин	>100,000	Метиламфетамин	12,500
Этилморфин	>100,000	Метоксифенамин	12,500
Пропоксифен		Прометазин	25,000
d-Пропоксифен	200	Фенциклидин	25,000
d-Норпропоксифен	200		

Перекрестная реактивность

Принимая во внимание сложный химический состав клинических образцов мочи и возможность присутствия в них ряда потенциально конкурирующих соединений, аналогичные ситуации были симулированы путем последовательного добавления в образец потенциально конкурирующих соединений в известной концентрации. Приведенные ниже вещества в концентрации 100 мкг/мл не проявили перекрестной активности при использовании Одноэтапной мульти-тест-системы для определения наркотических веществ в моче фирмы Wondfo.

Соединения, не проявляющие перекрестной реактивности

Acetophenetidin	Creatinine	Loperamide	Quinidine
Nalidixic acid	Deoxycorticosterone	Meprobamate	Quinine
Acetylsalicylic acid	Dextromethorphan	Methoxyhenamine	Ranitidine
Aminopyrine	Diclolfenac	Nalidixic acid	Salicylic acid
Amoxicillin	Difunisal	Naloxone	Serotonin
Ampicillin	Digoxin	Naltrexone	Sulfamethazine
L-Phenylephrine	Diphenhydramine	Naproxen	Sulindac
Apormorphine	(-)-ψ-Ephedrine	Niacinamide	Tetracycline
			Tetrahydrocortisone,3
Aspartame	Ecgonine methylester	Nifedipine	Acetate
			Tetrahydrocortisone, (β-D
Atropine	Ethyl-p-aminobenzoate	Norethindrone	glucoronide)
Benzillic acid	Erythromycin	D-Norpropoxyhene	Tetrahydrozoline
Benzoic acid	β-Estradiol	Noscapine	Thiamine
Benzphetamine	Estrone-3-sulfate	D.LOctopamine	Thioridazine
Billirubin	Fenoprofen	Oxalic acid	Tolbutamide
Deoxycorticosterone	Furosemide	Oxolinic acid	D.LTyrosine
Caffeine	Gentisic acid	Oxymetazoline	Triamterene
Chloralhydrate	Hemoglobin	Papaverine	Trifluoperazine
Chloramphenicol	Hydralazine	Penicillin-G	Trimethoprim
Chlorthiazide	Hydrochlorothiazide	Perphenazine	D.LTryptophan
(+) Chlorpheniramine	Hydrocortisone	Phenelzine	Tyramine
Chlorpromazine	O-Hydroxyhippuric acid	L-Phenylephrine	Uric acid
Chlorquine	3-Hydroxytyramine	β-Phenylethylamine	Verapamil
Cholesterol	(+) Isoproterenol	Phenylpropanolamine	Zomepirac
Clonidine	Isoxsuprine	Prednisone	D-Pseudoephedrine
Cortisone	Ketoprofen	D.LPropanolol	
	Lebetalol	(-) Cotinine	

Из приведенных выше результатов видно, что НАРКОСТОП на 16 видов наркотиков хорошо защищен против перекрестного взаимодействия между данными соединениями.

РЕКОМЕНДОВАННАЯ ЛИТЕРАТУРА

Baselt, R.C. Disposition of Toxic Drugs and Chemicals in Man. Biomedical Publications, Davis, CA, 1982. $Ellenhorn, M.J.\ and\ Barceloux, D.\ G\ Medical\ Toxicology.\ Elservier\ Science\ Publishing\ Company, Inc., New\ York,$

 $Gilman, A. G., and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and Goodman, L. S. The Pharmacological Fluids, in Martin WR (ed): Drug \ Addiction \ I, New York, and I, I and I$ Spring - Verlag, 1977.

Harvey, R.A., Champe, P.C. Lippincotts Illustrated Reviews. Pharmacology. 91-95, 1992.

Hawwks RL, CN Chiang. Urine Testing for drugs of Abuse. National Institute for Drug Abuse (NIDA), Research

Hofmann F.E., A Handbook on Drug and Alcohol Abuse: The Biomedical Aspects, New York, Oxford University Press, 1983.

McBay, A. J. Clin. Chem. 33,33B-40B, 1987.

ЗНАЧЕНИЕ СИМВОЛОВ

Хранить вдали от света

Хранить при температуре от 4°C до 30°C

Хранить вдали от влаги

Повторно не использовать

Guangzhou Wondfo Co., Ltd. Wondfo Scientech Park South China Univ. of Technology Guangzhou 510641

